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CALCULATION OF RF FIELDS IN AXISYMMLIRIC CAVITIES™

Y.

ADstract - A new code, PISCES, has been developed
for calculating a complete set of rf electromagnetic
modes 1n an axisymmetric cavity. The finite -element
method is used with up t> third-order shape funct.ons.
Although two components are enough to express these
modes, three components are used at unknown variables
to take advantage of the symetry of the element
satrix. The unknowns are taken to be either the
electric field components § = (i.. E,. E;) or the
magnetic field components § = (hy hg, H;). The zero
aivergence condgition will be satisiiea by the shape
function within each element.

INTRODUCY 10N

Th1s work wdas motivated by studies o° the
aisk-and washer accelerating structure geonetry.
Because the accelerating mode for these stru-tures
does not belong to the lowest passbana of pos-ible
excitation moaes. 1t is necessary thal other msies
not overlap t..e accelerating mode. The modes of
greatest concern are those in .he TM;; passbang,
which are known to cause bean-aerlecllon problems 11
some appli-ations

The most frequently used computer program to
evaluyate rf cavities 1s SUPLRFISK [1]  SUPLRF;SH can
~alculate only symmetric modes in an axisymmetric or
1wo -dimensional geometry ULTRAFISH [?] was developed
10 compute the asymmetric modes fur such geometries
Howeser, because ULTRAI [SH has a numerical difficulty
of spurlous s'ngularities, it hgs been difficyll to
use [3] PRUD {[a] was developed for the same appli
cation. The development of PISCIS began befcre
URMeL 5] was generally available

FORMULAT |

The buSic equations to be selved are [6, 1]

vVE-k0-0, anw -0 (. ()

or Ve -x’8-0. diel 0K . .

?

where k€ - W2¢p atd W s the entire volume

Bounuary condgitions are

{xa-G or -8 0 ()

on electric houndaries (I'g) tor metul suriace., and

t«-9-0 o Wxp-0 (%)

on maghelic boundary (14) .,

where § denotles the gylwara normal on the houndary
Integrating (1) over (1 atter multiplying by &€
(virtual electryc firld) and applying Grean's theotem,
the following relationy must hold tor any Af
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The second term n surf{ace intleqraiion of .61
becnmes zero on either (l,) or (Iy) because of the
boundary condition of (7) or (8). [Ihe first lerm
gives the natural boundary condition Similar equa
tions can be obtained for u thereafler excepl i¢r
boundury condition gifferences
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where 4 is the element volume, where the symbol T
denotes matrix transpese.

To reduce the problem, we shall assume that £,
and €. depend on ¢ only through cos me¢ and that
E¢ depends on ¢ only through sin ime.

Using t.e same shape function § for each compo-
nent, and employing (12) for arbitrary 4f, we get
the element matrix equation:

(+(14ad) 448 m(20+4) m(3+1" l.

m(28+4) -0y 08 W |8,

(") ' fen’y ‘,
wheve

T T
- [T aneap - am rra,
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[ 3 f(l -ar'+al « §) rdrdz,
a r
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The singularity of B on the aris is not serious
because the real divergent term is eliminated by the
axial boundary condition. By assenbling all element
matrices and applying the bov~dary condition, finally
we get the general eigenvalue equation

IR SR (14)
where B and § are symmetric-banded matrices, and x
1s an eigenvector for the field variables.

SHAPt FUNCTION AND ZERO-DIVERGENCE CONDITION

The shape fuaction used for each triangular
clement consists of polynomials up to third order
(Fig. 1). The Type | element has three compact nodes.
where first derivativos arn specifiod together with
the value (see Fig. 2a). The shape funciion is

2
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=9 Ly, - Fraba) * (fg = bty L(‘“)
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where Ly Is an area coordinptle, 7y and ry are z

and v coordinates of the th vertexes, respoctively.
A compact node (lype V for the top vertex of Fig. 1)
Is equivalent to throe adjacent normal nodes (lype ?
for top ver«» of Hig. 1) in terms of specifying the
polynomial.y| Conversion matrix 1, from Type | to
lype 2 throus! Type B are gencratod by MACSYMA to
matntain compatihility along the element boundary.
That 15, 1f there are only three parametors specified
alony the stde, the fourth one 1y tnternally generated
by assuming that the vartation atong the stde Is of
the second order.

G-t =B T eyl y , 6)
where § {is the original shape function of Type 1 or
Type C, §5 1s the generated shape function, and § and
y are the original and the reduced set of parsmeters,
respectively. Type C (see Fig. 2b} is a regular
third-order-polynomial shape function and Types D
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Shape functions used in the PISCES program.
Symool 0 dunotes the compact node where throe parame -
ters arc attached. Symbol X denotes the normal node
vaere only one parameler is attacned. The vertex s
classed into five types as indicated above.
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through F are derived from Type C. The curved
boundaries [7] are also avallable, The centroid
value can be eliminated by retaining second-order
precision.[(8]

Because spurious solutions [6] not satisfying
the 2ero-divergence condition exist, some technique
had to be incorporated. There are two methods:
(a) One of the variables at a compact node can be
eliminated by the condition

m 1
vVel-~ r E0 t Er + ar[r + azEz =0

This condition can be written in matrix form as
A
PR
apkgl

Epl
E
ra N] - : = Q.

(11a)

rev L =[mN 3 rN (17b)
| a.E,3
£,
£10
€;10

This can be solved for 3,.L, at each vertex of 1
through 3

[arErl]
iarErZE = Sv e~ E,, E Ez's except for arEr's:. (18)
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{b) The centroid-node value L4 can be used to impnse
the integrated zero -divergence condition. [ lhe proce
dure i1s similar to (a) avove,] 1lhe condition in
matrix form is

L4

=0 . (19)
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If m¢ O, this can be always solved for centrold value
t,10 and we get

te!

(20)

t,10
?
With §, or $4. we can get Lhe conversion matrix €
or €
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where § s one parameter shape tunction of type | ot
lype ¢ and ¢ vepresents . €, ¢y, €, * €. or
C c 6y €. 1he olement matrix ouun?||u||un¢nm'x

¢ oMty ke ke (24

When m = ©, neither the centroid value €, nor
E, can affect [, v « E @V, and E, is used to impose
Er = r3 E. - ra;E, at the centroid by the same manner
as (a). (?he centroid node 1s not the compact node.)
No spurious mode can be seen when m > 1, but when
m = 0, there are spurious modes because the zero-
divergence condition is not sufficiently satisfied 1in
each element. This prohlem i1s avoided by using L¢ and
H¢ componenls as unknown variables when m = 0.

CORNER SINGULARITY

There 1s some difficulty at a geometry corner [6]
because of the diverging, noncontinuous singularity of
the £, and £, components.First of all, the point should
not be a compact node even for £, and He solution of
m= 0 case, because a compact node has smooth value
variation and E, has first-order-derivative singular-
ity. One poss1gle solution to this problem is not to
maintain the compatibility along the siagular bound
ary: that is, place separate value at the singu'ar
point for each element. 1his problem is stiil under
investigation.

PROGRAM

The program consists of three parts: the auto-
matic mesh generator N‘1, the solver PISUES, and the
display post processor DISFLAY. The mesh generator
NET 15 stil]l under development using a modified quad
iree approach [9]. The input date can be g.epared by
hand or by using AUTOMLSH and LAT!1CE, which are parl
of the POISSON group code.

There s a reduced version of PISCES that is 2 D
and an axisymmetric version and has an automatic fre
quency optimization feature suitable for cavity de
sign. The eigenvalue problem is solved by Jenning-
method [(10], which can simultaneously find any numbuar
of eigenvalues and elgenvectors starting with the
lowest ones. All modes are obtdained including Ity
modes, which cannot be calculated by SUFLRFIS: and
URMEL with simple optlon. With boundary-congition
modif icat fon performed by hand, SUPERFISH c(en calcu
late Ttp modes. Also, the reduced version DISPLAYUD
Is avaliable for PISCESO, The O value and lhe shyr-!
imprdance can be evalualed.

RESULTS
Tables 1 and 11 show the elgenfreguen-les In a

10 cm radius sphere from the analytic solutlon, SUPER
FISH, URMEL, and PLISCLS ‘or m - O and m = 1. Spur loun
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TABLL 1

COMPARISON OF TWL AISULTS FOR 10-cm-RADIUS SPHERL WMERE m » 1

PISCES
a1 AMALYTC ul L

. Lrid . WAG ¢ LLLCIRIC FI0LD

101vF 10ivF vDIVF NONE
FREEDOM - - 1000 265 2\9 201 219

™, 1846 6 1848 4 185' 9 1847 2 1822 % 1846 9
1, 21440 2147 & 2145 & 2144 2 2'5% & 48 )
2754 S
LD 82 4 2865 1 289%.2 28939 2881 9 289) 1

28C3
{ 3334 318 9 3338 5 3Ns 8 1 e 333 9
" 3551 & 158 0 3554 4 3552 6 3565 4 35%. ¢
"t k86 0 188¢ ? 3690 0 64 2 J689 ¢

w88 8

[ $0uricus mode

solutions are marked with an x. In PISCES, there are
some options for imposing zero-divergence condiilons.
One s *0 use a vertex-rode variable, and another is
10 use a centroid-node value. These options are rep
resented as VDIVF and 101VF, respectively. Applying
both options sometimes makes the system matrix non-
positive and unsolvable. The agreement between the
analytic value and the results from these codes is
reasonable. Figure 3 shows the mesh used and the
field pattern for a solution using H as the unknown
variable. Figure 4 shows the appearance of a typical
system matrix for two cases of m O and a case of

m - 1. Only the banded portion of the matrix is
stored. One minute of VAX-780 cemputing time was
used fcr the calculation shown in lable | for L0

and H, as unknown variables.
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Fig. 3.
A fleld pattern for a solutlon using H.
column shows the m - O solulion using te and Hy.
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fig. 4.
Population of system matrices. The m = 0 case 1s
shown on top, and the m - 1 case is on the bottom.
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